Proceedings of the Third European Conference on Research and Advanced Technology
for Digital Libraries, Paris, France, September 22-24, 1999, pp. 453-464

SODA: Smart Objects, Dumb Archives

Michael L. Nelson!, Kurt Maly?, Mohammad Zubair?, Stewart N. T. Shen?

" NASA Langley Research Center, MS 158, Hampton, Virginia, USA 23681
m.l.nelson@larc.nasa.gov
2 0ld Dominion University, Computer Science Department, Norfolk, Virginia, USA 23592
{maly, zubair, shen}@cs.odu.edu

Abstract. We present the Smart Object, Dumb Archive (SODA) model for
digital libraries (DLs). The SODA model transfers functionality traditionally
associated with archives to the archived objects themselves. We are exploiting
this shift of responsibility to facilitate other DL goals, such as interoperability,
object intelligence and mobility, and heterogeneity. Objects in a SODA DL
negotiate presentation of content and handle their own terms and conditions. In
this paper we present implementations of our smart objects, buckets, and our
dumb archive (DA). We discuss the status of buckets and DA and how they are
used in a variety of DL projects.

1 Introduction

The Smart Object, Dumb Archive (SODA) model for digital libraries (DLs) was
developed within the context of NCSTRL+ [15], the joint NASA Langley Research
Center and Old Dominion University extension of the Networked Computer Science
Technical Report Library (NCSTRL) [1]. The premise of the SODA model is a
separation of responsibilities: associating with digital libraries such traditional value-
added services as indexing and searching; with digital objects their individual
properties as distinguished from those of a collection; and with archives guaranteed
access over a period of time. To this end we have developed buckets, data objects
tailored for DL use, that enforce their own terms and conditions, negotiation and
presentation of content, and maintain their own metadata. Many of the functions
traditionally associated with archives have been “pushed down” into the buckets
themselves, resulting in “smarter” objects and “dumber” archives.

Buckets are thus a special class of digital objects that are aggregative and intelligent
agents. Buckets are DL-protocol independent, and due to their self-contained nature,
can exist outside of DLs altogether. Buckets provide the mechanism (not the policy)
for grouping related information objects into a single logical entity for archiving. We
are designing buckets to contain intelligent agents so they can communicate with each
other, people, and arbitrary network services as well as perform computational and
self-modifying tasks. Buckets are described further in [14].

Archives in the SODA model correspond to the lowest level - core archives - of the
Kahn/Wilensky Framework (KWF) [2]. In that spirit we believe there should be only
very limited functionality associated with an archive. Specifically, the functions an
archive should support are those of: add, delete, retrieve, list all objects and set/get
metadata about the archive.

1.1 Terminology

Since there is no consensus on DL terminology, we use the following definitions for
this discussion:

_ digital library services- the “user” functionality and interface: searching, browsing,
usage analysis, citation analysis, selective dissemination of information (SDI), etc.
__archive - managed sets of data objects. DLs can poll archives to learn of newly

published data objects, for example.
__data object - the stored and trafficked digital content. These can be simple files
(e.g., PDF or PS files), more sophisticated objects such as buckets.

Figure 1 illustrates that hierarchical nature of DLs, archives, and buckets. A DLS is
shown as a single entity, but this logical entity could be a distributed set servers. Note
that although users can communicate with archives, we envision that archives will
largely function only as middleware — enabling a DLS to locate buckets. Users will
find buckets through a DL interface, and once found they will interact with the
buckets themselves.

Other DL models are possible (Table 1). The Smart Objects, Smart Archives (SOSA)
model is possible, even likely to be the "default" DL of the future. However, to
highlight the functionalities of buckets, we introduce them in the SODA context. Note
that the Dumb Object, Smart Archive (DOSA) model describes the state of most
current DLs, and the Dumb Object, Dumb Archive (DODA) model is an accurate
description of early DLs.

Table 1. Archive Design Space

Smart Archives Dumb Archives
Smart Objects SOSA SODA

DL Example: none known DL Example: NCSTRL+
Dumb Objects DOSA DODA

DL Example: NCSTRL DL Example: an anonymous

FTP server with .ps.Z files

1.2 Motivation

We have been involved with a number of high traffic production NASA DLs since
1994, including the Langley Technical Report Server [17], the NASA Technical

Report Server [16], and the NACA Report Server [12]. One thing we have observed
from http log files is a surprising number of people do not find the NASA and NACA
publications via the NASA and NACA DLs. Since the full contents of the NASA DLs
are browsable, both the abstract lists and the reports are indexed by web crawlers,
spiders and the like. Users are formulating complex queries to services such as
Yahoo, Altavista, Lycos, Infoseek, etc. We presume this is indicative of the resource
discovery problem: people start there because they do not know all the various DLs
themselves; and the meta-searching problem: they are trusting these services to search
many sources, not just the holdings of a single DL.

Library Users

|

Digital Library
Services

7

=

Digital Library
Service Providers

Objects
Archive 1 Archive2 | . Archive N O Qout of Archives
O O
Digital .
Objects Publishers

o O o O o O

in Archives

o O o O o O
Fig. 1. Access in the DL Hierarchy

Although we believe we have built attractive and useful interfaces for the NASA DLs,
our main concern is that people have access to NASA content and not that they use a
specific DL interface. It is desirable that NASA publications are indexed by many
services. Since there are several paths to the information object, the information
object must be a first class network citizen, handling presentation, terms and
conditions, and not depending on archive functionality. Buckets implement the object
as a first class citizen idea, and both buckets and the DA software facilitate greater
dissemination of the material by making it easier for the holdings to be found and
indexed by third party services.

1.3 Background

The NCSTRL+ project is based on the creation of buckets and the extension of the
Dienst [8] protocol. Dienst is a collection of DL services that receive messages
encoded and transmitted via hypertext transfer protocol (http). Objects in Dienst are
stored in directories, and are accessed through the Repository service. Metadata for
the objects are stored in RFC-1807 format [9]. In addition to changing Dienst to
properly handle buckets, we have added a new verb, Recluster, to the User Interface
Service to assist in dynamically changing the display of search results.

2 Buckets: Smart Objects

Buckets are object-oriented container constructs in which logically grouped items can
be collected, stored, and transported as a single unit. For example, a typical research
project at NASA Langley Research Center produces information tuples: raw data,
reduced data, manuscripts, notes, software, images, video, etc. Normally, only the
report part of this information tuple is officially published and tracked. The report
might reference on-line resources, or even include a CD-ROM, but these items are
likely to be lost or degrade over time. Some portions such as software, can go into
separate archives (i.e., COSMIC or the Langley Software Server) but this leaves the
researcher to re-integrate the information tuple by selecting pieces from multiple
archives. Most often, the software and other items, such as datasets are simply
discarded. After 10 years, the manuscript is almost surely the only surviving artifact
of the information tuple.

Large archives could have buckets with many different functionalities. Not all bucket
types or applications are known at this time. However, we can describe a generalized
bucket as containing many formats of the same data item (PS, Word, Framemaker,
etc.) but more importantly, it can also contain collections of related non-traditional
STI materials (manuscripts, software, datasets, etc.) Thus, buckets allow the digital
library to address the long standing problem of ignoring software and other supportive
material in favor of archiving only the manuscript [21] by providing a common
mechanism to keep related STI products together. The current semantics of buckets
include a two-level structure: "elements", which are the unit of storage in buckets, and
"packages", which are groups of elements. Figure 2 illustrates a typical bucket in a
NASA DL application.

Our bucket prototypes are written in Perl 5, and make use of the fact that Dienst uses
http as a transport protocol. Like Dienst, bucket metadata is stored in RFC-1807
format, and package and element information is stored in newly defined optional and
repeatable fields. Dienst has all of a document's files gathered into a single Unix
directory. A bucket follows the same model and has all relevant files collected
together using directories from file system semantics. However, this is
implementation specific. The bucket API defines all operations on buckets. The
bucket is accessible through a Common Gateway Interface (CGI) script that parses the

messages and enforces terms and conditions, and negotiates presentation to the
WWW client. The bucket presentation format is currently encoded within the bucket,
but we are currently planning to model presentation requirements using the Resource
Description Framework (RDF) [10] to provide a mechanism for providing dynamic
presentation templates that can exploit known semantics during presentation.

The philosophy of Dienst is to minimize the dependency on HTTP. Except for the
User Interface service, Dienst does not make specific assumptions about the existence
of HTTP or the Hypertext Markup Language (HTML). However, Dienst does make
very explicit assumptions about what constitutes a document and its related data
formats. Built into the protocol are the definitions of PostScript, ASCII text, inline
images, scanned images, etc. We feel that tightly coupling the DL protocol with
knowledge of individual file formats reduces the flexibility of the DL protocol,
making it less adaptable to new or locally defined data types and data relations.

CNRI Handle Access Methods
(unique id)

N\

v

Terms and Conditions

Ly | Metadata (RFC 1807, Dublin Core) |
Packages =~ 1| Manuscript s pdf tex doc o] Elements inside

- ide th /t-he package
1nside the :
> Software .tar .c .java /
bucket x | </I/
[~ | images .gif jpeg ‘/[

™ | data sets Xls tar & |

Fig. 2. A Typical NASA DL Bucket

We favor making Dienst less knowledgeable about dynamic topics such as file
format, and making such knowledge the responsibility of buckets. In NCSTRL+,
Dienst is used as an index, search, and retrieval protocol. When the user selects an
entry from the search results, Dienst would normally have the local User Interface
service use the Describe verb to peer into the contents of the documents directory
(including the metadata file), and Dienst itself would control how the contents are
presented to the user. In NCSTRL+, the final step of examining the directory structure
is skipped, and NCSTRL+ issues a URL redirect to the bucket. At this point, the user

is communicating with the bucket and not Dienst or any other archive. The default
method for an index.cgi is the display method, so the user notices little difference in
operation between NCSTRL and NCSTRL+.

The full list of bucket methods are discussed in [14]. Table 2 list some common
methods defined on a particular test bucket. Embedding this archive-like
functionality in the buckets comes at the expense of additional storage overhead,
approximately 80KB per bucket. However, we consider this trivial in comparison to
the size of typical NASA buckets (often several MBs), and with respect to the
additional functionality of object intelligencce, object heterogeneity, DL protocol
independence, and object mobility.

Table 2. Some Sample Bucket Methods

Methods and Arguments Description
http://dlib.cs.odu.edu/bucket/?method=display Displays the bucket’s contents in
or HTML. The default method.

http://dlib.cs.odu.edu/bucket/
http://dlib.cs.odu.edu/bucket/?method=list_princi Lists the principals (entries in

pals the password file). Access can
(this bucket’s appendices are restricted to “maly” be restricted to specific
/ “maly”) principals.
http://dlib.cs.odu.edu/bucket/?method=list_metho Lists all the methods known by
ds this bucket.
http://dlib.cs.odu.edu/bucket/?method=list_source Lists the source code for the
&target=display “display” method.
http://dlib.cs.odu.edu/bucket/?method=list_tc&tar Lists the terms and conditions
get=display.tc for the “display”” method.
http://dlib.cs.odu.edu/bucket/?method=list_logs Lists the names of all logs kept
by the bucket.

http://dlib.cs.odu.edu/bucket/?method=get_log&l Displays the access log.

og=access.log

http://dlib.cs.odu.edu/bucket/?method=id Displays the bucket’s handle.

http://dlib.cs.odu.edu/bucket/?method=metadata Returns the bucket metadata in
RFC-1807 format.

3 DA: Dumb Archives

The use of buckets or other smart objects does not necessitate the use of dumb
archives; it is possible to use buckets in a number of DL and WWW systems.
However, we are implementing DA (dumb archive) as a reference implementation
demonstrating the low level of functionality required for use in the SODA model.
Table 3 lists the basic methods defined for DA.

The DA is essentially a set manager - notice the DA has no search capabilities. The
DA's purpose is to provide DLs the location of buckets (the DLs can poll the buckets
themselves for their metadata) and the DLs build their own indexes. And if a bucket
does not “want” to share its metadata (or contents) with certain DLs or users, its terms
and conditions will prevent this from occurring. For example, we expect the NASA
digital publishing model to begin with technical publications, after passing through
their respective internal quality control, to be placed in a NASA archive. The NASA
DL would poll this archive to learn the location buckets published within that last
week. The NASA DL could then contact those buckets, requesting their metadata.
Other DLs could index NASA holdings in a similar way: polling the NASA archive
and contacting the appropriate buckets. The buckets would still be stored at NASA,
but they could be indexed by any number of DLs, each with possibility novel and
unique methods for searching or browsing. Or perhaps the DL collects all the
metadata, then performs additional filtering to determine applicability for inclusion
into their DL. In addition to an archive's holdings being represented in many DLs, a
DL could contain the holdings of many archives. If we view all digitally available
publications as a universal corpus, then this corpus could be represented in N archives
and M DLs, with each DL customized in function and holdings to the needs of its user
base. Figure 3 illustrates this publishing model.

Table 3. Methods for a Dumb Archive

Method Description

put insert a data object into the archive
delete remove a data object from the archive
list display the holdings of the archive
info display metadata about the archive
get redirects to the object’s URL or URN

4 Discussion

Although buckets and SODA were initially implemented using modified versions of
Dienst, it should be stressed that neither buckets nor SODA require Dienst to operate.
Indeed, a bucket design goal is to provide sophisticated digital objects for DLs that do
not require Dienst, or any other specific DL protocol, to be used. In our internal
applications, we regularly use buckets without Dienst. To applications that know to
exploit them, buckets offer much functionality. To applications that are not bucket
aware, buckets appear as regular HTML pages. For example, it would be easy to
build a DL using a webcrawler search engine (such as Excite for Web Servers or
Ultraseek Server). This would not be easily accomplished for data existing only
within a Dienst archive.

There may be situations in which buckets are unnecessary. For large homogeneous
collections, the storage overhead and additional administrative work of managing

both buckets and archives may be undesirable. For a DL that may never be more than
a DOSA or DODA DL, buckets are probably unnecessary. However, buckets are
motivated from of our own production DL experiences in which latent or creeping
requirements demanded that dumb objects eventually become smart.

Similarly, the motivation for SODA comes from our negative experiences in
transitioning from one DL system to the next, and have the same body of content
indexed by multiple systems. We believe that SODA builds the foundation for object
mobility, object-level heterogeneity and DL protocol level heterogeneity. We intend
to test these goals when we transition buckets and SODA from our prototypes to
production NASA DLs.

User Population

A

i

DLs Building
FromArchives NASA DL Avionics DL NCSTRL
and Buckets
A A A
Archives ’ ' ’
Managing | NASA Archive IEEE Archive CoRR
Buckets

we BB BAABE BAT /B8 8
8 MABese

(in archives
and out) é

Fig. 3. The SODA Publishing Model

5 Status

The NCSTRL+ DL interface is based on our extensions to the Dienst protocol to
provide a testbed for experimentation with buckets, clusters, and interoperability.
"Clustering" is an advanced searching and browsing capability that allows dynamic
clustering of holdings based on subject, institution, archival type and terms and
conditions. The NCSTRL+ interface «can be accessed at:
http://dlib.cs.odu.edu/ncstrlplustool.html

Our long-term plans call for the conversion of the NASA DLs to buckets and
NCSTRL+. At this point, the NCSTRL+ project is converting the over 1800 items in
the Langley Technical Report Server (LTRS) to buckets. The lessons learned in the
LTRS conversion is described in [13]. The buckets created in that conversion process
were stored in a dumb, stand-alone archive which was then indexed into NCSTRL+.
Therefore, having the handle for a bucket allows a user to retrieve the bucket from the
archive; on the other hand the user can search NCSTRL+ to find a bucket. In either
case the bucket itself will handle the presentation.

Additionally, we have developed a set of tools to aid in the creation, tracking and
management of buckets and enforcing publishing and maintenance policies for
archives. The tools have been used to create a testbed for NCSTRL+ which, at this
time, runs on three NCSTRL+ servers with index service for five archives. Since
NCSTRL+ can access other Dienst collections we can extend searches to all of
NCSTRL, CoRR, and D-Lib Magazine as well.

Other active bucket development areas include: the creation of “light-weight buckets”
that provide a author specified subset of functionality to save on storage overhead
and the creation of XML specified bucket ontologies. These will shield users from
the two-level constructs of packages and elements and allow the storage and
interaction of arbitrarily complex hierarchies that represent real world objects (i.e.,
“assignments” within a “university class” bucket).

6 Related Work

There is extensive research in the area of redefining the concept of “document” or
providing container constructs. In this section we examine some of these projects and
technologies that are similar to buckets, as well as projects that similar capabilities as
DA. Although buckets as intelligent agents is not described in this paper, we also note
that we are unaware of other attempts to make archival entities intelligent.

6.1 Bucket-Like Projects

Buckets are most similar to the digital objects first described in the Kahn/Wilensky
Framework [2], and its derivatives such as the Warwick Framework containers [6]
and the more recent Flexible and Extensible Digital Object Repository Architecture
(FEDORA) [18]. In FEDORA, DigitalObjects are containers, which aggregate one or
more DataStreams. DataStreams are accessed through an Interface, and an Interface
may in turn be protected by an Enforcer. The significant design difference between
the KWF derivatives and buckets is that KWF DigitalObjects are tightly tied to the
archive and protocol that hold and serves them.

Multivalent documents [19] appear similar to buckets at first glance. However, the
focus of multivalent documents is more on expressing and managing the relationships
of differing “semantic layers” of a document, including language translations, derived
metadata, annotations, etc. There is not an explicit focus on the aggregation of several
existing data types into a single container.

E-commerce applications are producing a number of bucket-like projects. One
example is IBM's cryptolopes [4], which are designed to allow for unlimited
distribution of that data objects, but controlled access to their contents. Similarly,
DigiBox [20] has been developed with the goal “to permit proprietors of digital
information to have the same type and degree of control present in the paper world”
[20]. As such, the focus of the DigiBox capabilities are heavily oriented toward
cryptographic integrity of the contents, and not so much on the less stringent demands
of the current average digital library. There appears to be no hooks to make either
DigiBoxes or Cryptolopes intelligent agents. DigiBox and Cryptolope are commercial
endeavors and are thus less suitable for our research purposes.

To a lesser extent, buckets are not unlike some of the proposals from various
experimental filesystems and scientific data types. The Extensible File System
(ELFS) [3] provides an abstract notion of “file” that includes both aggregation, data
format heterogeneity, and high performance capabilities (striping, pre-fetching, etc.).
While ELFS is designed primarily for a non-DL application (i.e., high-performance
computing), it is typical of an object-oriented approach to file systems, with generic
access APIs hiding the implementation details from the programmer.

The Hierarchical Data Format (HDF) and related formats (netCDF, HDF-EOS, etc.) is
a multi-object, aggregative data format that is alternatively: raw file storage, the low-
level I/O routines to access the raw files, an API for higher level tools to access, and a
suite of tools to manipulate and analyze the files [11 22]. While HDF is mature and
has an established user base, it is largely created by and for the earth and atmospheric
sciences community, and this community's constraints limits the usefulness of HDF as
a generalized DL application. It is worth noting, however, that buckets of HDF files
are entirely possible and appropriate.

6.2 DA-Like Projects

DA is interesting because of what it leaves out, not what implements. As the name
implies, there are any number of more sophisticated archive related projects and
technologies. For example, the proposed Repository Access Protcol (RAP) [7] reveals
many the same operations of DA (VERIFY, DEPOSIT, DELETE, etc.), but it defines
separate explicit ACCESS operations for both the digital object and its metadata.
Such concepts in SODA have been removed from the DA and placed within the
bucket itself.

The Dienst protocol has some DA-like concepts as well. In particular, the Repository
Service in Dienst implements a List-Contents verb, the LibMgt Service implements a
Submit verb, etc. However, the main function of the Repository Service in Dienst is to
regulate access to the items in the repository, through verbs such as Body and Page.
Again, in SODA these functions are pushed down into the buckets.

The Dienst research group have proposed a more recent service, the Collection
Service [5]. This service is more like DA than the previous examples, in that its
purpose is to group together arbitrary network objects based on some criteria.
However, future plans for the collection service call for it to be involved in operations
such as query routing, which are obviously beyond the scope of the DA. When the
Collection Service is available for testing, it may be a good candidate to implement a
SOSA model DL.

7 Conclusions

The SODA DL model was created for the NCSTRL+ project to facilitate DL
interoperability and to increase the scope and nature of the availability of archived
data objects. SODA shifts many functions associated with archives to the archived
objects themselves. We have developed aggregative and intelligent archival entities,
buckets, to handle this shift in responsibility. Buckets can exist in a number of DL
archives, or outside archives altogether and responsible for presentation of the their
contents and enforcing their own terms and conditions. To services that are not
bucket-aware, buckets appear as ordinary HTML pages. The dumb archive we have
developed, DA, provides just enough functionality to illustrate the role of an archive
as the middle layer in the SODA DL hierarchy. SODA facilitates DL interoperability
by clearly separating the roles of a DL, an archive, and the object itself. Finally, the
SODA model facilitates wider dissemination of holdings by making it easy for third
party services to find and index buckets.

References

1. J. Davis & C. Lagoze: The Networked Computer Science Technical Report Library,
Cornell CS TR96-1595, July, 1996. http://cs-
tr.cs.cornell.edu/Dienst/Ul/1.0/Display/ncstrl.cornell TR96-1595

2. R. Kahn & R. Wilensky: A Framework for Distributed Digital Object Services,
cnri.dlib/tn95-01, May 1995. http://www.cnri.reston.va.us/home/cstr/arch/k-w.html

3. J. F. Karpovich, A. S. Grimshaw, & J. C. French: Extensible File Systems (ELFS): An
Object-Oritented Approach to High Performance File I/O, Proceedings of the Ninth
Annual Conference on Object-Oriented Programming Systems, Languages and
Applications, October 1994, pp. 191-204.

4. U. Kohl, J. Lotspiech, M. A. Kaplan: Safeguarding Digital Library Contents and Users:
Protecting Documents Rather Than Channels, D-Lib Magazine, September 1997.
http://www.dlib.org/dlib/september97/ibm/09lotspiech.html

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

C. Lagoze & D. Fielding: Defining Collections in Distributed Digital Libraries. D-Lib
Magazine, November 1998. http://www.dlib.org/dlib/november98/lagoze/11lagoze.html

C. Lagoze, C. A. Lynch & R. Daniel: The Warwick Framework: A Container Architecture
for Aggregating Sets of Metadata, Cornell Computer Science Technical Report TR96-
1593, July 1996. http://cs-tr.cs.cornell.edu/Dienst/Ul/1.0/Display/ncstrl.cornell/ TR96-1593
C. Lagoze, R. McGrath, E. Overly & N. Yeager: A Design for Inter-Operable Secure
Object Stores (ISOS), Cornell CS TR95-1558, November 1995. http://cs-
tr.cs.cornell.edu/Dienst/U1/2.0/Describe/ncstrl.cornell/ TR95-1558

C. Lagoze, E. Shaw, J. R. Davis, & D. B. Krafft: Dienst: Implementation Reference
Manual, Cornell University Computer Science TR95-1514, May 1995. http://cs-
tr.cs.cornell.edu/Diesnt/UI/2.0/Describe/ncstrl.cornell/ TR95-1514

R. Lasher & D. Cohen: A Format for Bibliographic Records, Internet RFC-1807, June
1995. http://info.internet.isi.edu/in-notes/rfc/files/rfc1807.txt

E. Miller: An Introduction to the Resource Description Framework, D-Lib Magazine, May
1998. http://www.dlib.org/dlib/may98/miller/05miller.html

NCSA HDF Home Page, http://hdf.ncsa.uiuc.edu

M. Nelson: A Digital Library for the National Advisory Committee for Aeronautics,
NASA TM-1999-209127, April 1999.
http://techreports.larc.nasa.gov/ltrs/PDF/1999/tm/NASA-99-tm209127.pdf

M. L. Nelson, K. Maly, S. N. T. Shen, & M. Zubair: Generalizing an Existing Digital
Libraries, Old Dominion University Computer Science TR-99-01, February 1999.
http://cs-tr.cs.cornell.edu/Dienst/UIl/1.0/Display/ncstrl.odu_cs//TR_99_01

M. L. Nelson, K. Maly, S. N. T. Shen, & M. Zubair: Buckets: Aggregative, Intelligent
Agents for Publishing, Webnet Journal, 1(1), 1999, pp. 58-66. (Also available as NASA
TM-1998-208419; http://techreports.larc.nasa.gov/ltrs/PDF/1998/tm/NASA-98-
tm208419.pdf)

M. L. Nelson, K. Maly, S. N. T. Shen, & M. Zubair: NCSTRL+: Adding Multi-Discipline
and Multi-Genre Support to the Dienst Protocol Using Clusters and Buckets, Proceedings
of Advances in Digital Libraries 98, Santa Barbara, CA, April 22-24, 1998.
http://techreports.larc.nasa.gov/ltrs/PDF/1998/mtg/NAS A-98-ieeedl-mln.pdf

M. L. Nelson, G. L. Gottlich, D. J. Bianco, S. S. Paulson, R. L. Binkley, Y. D. Kellogg, C.
J. Beaumont, R. B. Schmunk, M. J. Kurtz & A. Accomazzi: The NASA Technical Report
Server, Internet Research: Electronic Networking Applications and Policy, 5(2), 1995, pp.
25-36.

M. L. Nelson , G. L. Gottlich & D. J. Bianco: World Wide Web Implementation of the
Langley Technical Report Server, NASA TM-109162, September 1994.

S. Payette & C. Lagoze: Flexible and Extensible Digital Object and Repository
Architecture, In C. Nikolaou & C. Stephanidis (eds.) Research and Advanced Technology
for Digital Libraries, Second European Conference, ECDL 98, Lecture Notes in Computer
Science, Vol. 1513, 1998, pp. 41-59.

T. A. Phelps & R. Wilensky: Multivalent Documents: Inducing Structure and Behaviors in
Online Digital Documents: Proceedings of the 29th Hawaii International Conference on
System Sciences, Maui, HI, January 3-6, 1996.

O. Sibert, D. Bernstein & D. Van Wie: DigiBox: A Self-Protecting Container for
Information Commerce, Proceedings of the 1st USENIX Workshop on Electronic
Commerce, New York, NY, July, 1995.

J. Sobieszczanski-Sobieski: A Proposal: How to Improve NASA-Developed Computer
Programs, NASA CP-10159, 1994, pp. 58-61.

I. Stern: Scientific Data Format Information FAQ, 1995.
http://www.cv.nrao.edu/fits/traffic/scidataformats/faq.html

